
المناصفيل المناصفيل المناسبة المناسبة

Université ibn Tofail Ecole Nationale des Sciences Appliquées KENITRA (Semestre 4) Année universitaire 2015/2016

<u>Contrôle continu d'Optique Physique</u> <u>Durée : 2H</u>

Exercice 1.

On veut mesurer la distance angulaire des composantes d'une étoile double, pour cela on considère un objectif L, assimilable à une lentille mince de distance focale f' = 1 m et un écran (E) placé au plan focal de la lentille L . On dirige le dispositif vers un groupe de deux étoiles très voisines S_1 et S_2 , qu'on supposera ponctuelles étant donné leur éloignement, elles émettent une même lumière monochromatique de longueur d'onde λ . La face d'entrée de l'objectif est masquée par un écran E_1 percé de deux fentes fines et parallèles F_1 et F_2 dont on peut faire varier la distance $a = F_1F_2$. Le dispositif est ainsi analogue à celui des trous d'Young (Figure cidessous).

On supposera que l'objectif est disposé de façon que S_1 et S_2 soient symétriques par rapport à son axe optique (Ox), celui-ci fait $\frac{\varepsilon}{2}$ avec la direction de S_1 et $-\frac{\varepsilon}{2}$ avec la direction de S_2 .

- 1. On considère d'abord S₁ seule qui éclaire le dispositif.
 - a) Quelle est la différence de marche δ_1 (a, y) entre des vibrations lumineuses passant par F_1 et F_2 et parvenant au point M d'abscisse $y = \overline{OM}$.
 - b) Ecrire l'équation de l'intensité $I_1(a,y)$ au point M en fonction de a,y,ϵ,λ,f' et I_0 .
 - c) En déduire l'expression l'interfrange i,.
- 2. On considère maintenant S2 seule qui éclaire le dispositif.
 - a) Quelle est la différence de marche $\,\delta_2$ (a, y).
 - b) Ecrire l'équation de l'intensité I_2 (α , y).
 - c) Quelle l'expression est l'interfrange i2.

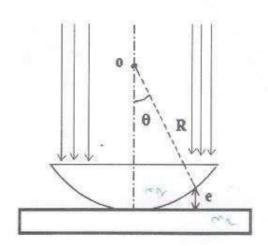
- 3. On suppose que S₁ et S₂ de même intensité . La différence d'une frange sombre donnée par S₁ à une frange brillante donnée par S₂ fait disparaître le système de franges.
 - a) Montrer que a_k = λ/ε (k + 1/2) où a_k est la distance F1F2 pour laquelle le système des franges disparait, et k une constante entière quelconque.
 La plus petite distance entre F1 et F2 pour laquelle les franges disparaissent a_m = 52 mm.
 Quelle est la distance angulaire ε entre les deux étoiles. On donne : λ = 520 nm.

Exercice 2.

Un système interférentiel est constitué de deux miroirs plans M_1 et M_2 faisant entre eux un angle dont le complémentaire est α très petit et éclairé par une fente source très fine F_o parallèle à l'arête Δ commune aux deux miroirs et située à la distance d de cette arête.

Un écran d'observation (E) est situé à la distance D = 2 m de cette arête.

- 1. Représenter le montage utilisé.
- 2. Calculer la distance <u>a</u> entre les deux sources virtuelles F_1 et F_2 , images de F_0 par les deux miroirs plans M_1 et M_2 . A.N. : d = 20 cm, $\alpha = 3.10^{-3}$ rad.
- 3. Quelle est la forme des franges et comment sont-elles orientées ? Calculer l'interfrange i. A.N. : λ = 600 nm.
- 4. Calculer la largeur L de champ d'interférence et le nombre N des franges sombres observées.
- 5. On suppose maintenant que la source très fine F_o émet une raie fine de centre v_o , de largeur Δv et d'intensité I_o .
 - a) En supposant que le phénomène observé correspond à la superposition des systèmes de franges donnés par chaque élément d ν de la raie fine, Montrer que l'éclairement I (M) total en un point M d'abscisse x de l'écran (E) est $I(M) = 2 I_0 \left[1 + V(x) . \cos(\frac{2\pi.a.x.\nu_0}{c..D^4}) \right]$ où V(x) une fonction à déterminer.
 - b) Tracer l'allure de V(x) en fonction de x?
 - c) Tracer l'allure de I(M) en fonction de x.
 - c) Décrire l'aspect du système de frange sur l'écran (E).


Université ibn Tofail Ecole Nationale des Sciences Appliquées KENITRA (Semestre 4) Année universitaire 2015/2016

Contrôle Terminal d'Optique Physique Durée : 1H 30mn

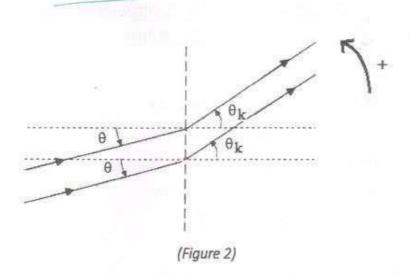
Exercice 1:

La surface convexe (de grand rayon de courbure R) d'une lentille plan-convexe d'indice $n_1 = 1,50$ est au contact dans l'air avec une lame de verre $n_2 = 1,68$. Le système est éclairé à l'incidence normale par un faisceau de lumière monochromatique de longueur d'onde λ (figure 1).

1) Expliquer pourquoi on observe des anneaux d'interférences. Où sont localisées ces anneaux ? Quel est l'aspect du centre de la figure d'interférence?

(figure 1)

- 2) Montrer que le rayon du k ième anneau brillant peut s'exprimer par la relation $\rho_{kB} = f(k,R,\lambda)$ où f est une fonction que l'on déterminera. En déduire les rayons ρ_{kN} des anneaux noirs?
- 3) La mesure des rayons se fait à partir de l'image de la figure d'interférence obtenue sur un écran ou sur une plaque photographique avec une lentille convergente auxiliaire.


Quand on utilise une radiation bleue de longueur d'onde $\lambda = 450$ nm on mesure 1,5 mm pour le deuxième anneau noir. Calculer le rayon de courbure R.

- 4) On remplace la source bleue par une source rouge et on trouve 2,7 mm pour le 5 ième anneau brillant.

 Quelle est la longueur d'onde de la radiation rouge?
- 5) L'interstice entre la lentille plan-convexe et la lame de verre est maintenant rempli de disulfure de carbone d'indice $n_3 = 1,63$.
 - a) Que devient l'aspect du centre de la figure d'interférence?
 - b) Quels sont les nouveaux rayons du 3 ieme anneau noir obtenus avec les radiations précédentes bleue et rouge?
- 6) On enlève le disulfure de carbone de l'interstice. Expliquer ce que l'on observe lorsque l'on déplace vers le haut progressivement la lentille plan-convexe en gardant fixe la lame de verre.

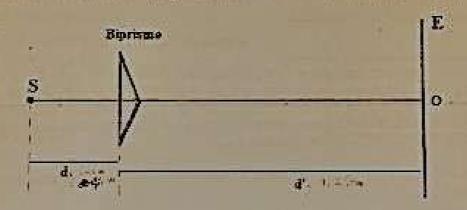
Exercice 2.

On considère un réseau de longueur utile L=2 cm et de n=750 traits/mm éclairé par une source monochromatique en incidence oblique θ (figure 2).

- 1) Donner la formule définissant pour une incidence θ les directions θ_k dans lesquelles on trouve des maximum de lumière d'une radiation monochromatique de longueur d'onde λ .
- 2) On utilise ce réseau en incidence normale.
 - a) Calculer les angles des directions dans lesquelles nous avons des maximum de lumière pour une radiation de longueur d'onde $\lambda = 589$ nm.
 - b) Montrer que l'on observe 5 directions avec une symétrie.
- 3) Nous utilisons ce réseau pour disperser les radiations d'une source de sodium. Calculer l'écart angulaire $\Delta\theta_k$ des maximum des radiations $\lambda_1 = 589$ nm et $\lambda_2 = 589$,6 nm de la source de sodium à :
 - a) L'ordre k = 1.
 - b) L'ordre k = 2.
- 4) Donner à l'ordre k l'expression du pouvoir de résolution R de ce réseau.
 - a) A l'ordre k=1 ce réseau peut-il séparer les radiations $\lambda_1=589$ nm et $\lambda_2=589$,6 nm.
 - b) Même question à l'ordre k =2.

pas l'approsimelie

Bon Courage.

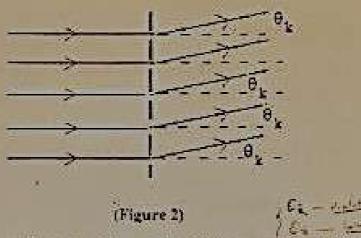


Université lon Tafait
Ecote Nationale des Sciences Appliquées
KENTRA
(Semestre 4)
Aunée universitaire 2015/2016

Contrôle de rattrapage d'Optique Physique Durée : 1H 45mn

Exercice 1 : (Interférences)

Un bi-prisme constitue de deux prismes identiques de verte d'indice n=1.5, accolés par leurs bases, de meme angle au sommet A très faible, est éclaire par une source ponctuelle S: emetiant une lumière monochromatique de longueur d'onde $\lambda=644$ nm. La source S est sincée à d=50 cm du bi-prisme. On observe les franges d'interférences sur un écran E situé à une distance de $d^*=1.25$ m (Figure 1).


(Figure 1)

- 1) Préciser sur un schema, la position des sources secondaires et le champ d'interférences:
- 2) Etablir l'expression linerale, en fonction de A, n, d, de l'écurrement S_1S_2 des sources secondaires S_1 et S_2 .
- Etablir les expressions littérales de l'interrimage | c. de la largeur L du charup d'interrérences sur l'écran E.
- 4) Sachant que la distance séparant la frange centrale et la quatrième frange sombre jest y = 2.25 mm.
 - a) Calculer l'angle au sommet A des prismes,
 - b) En déduire la distance S₁S₂ et déterminer le nombre de franges brillantes visibles dans le champ d'interférences.
- 5) La source émet maintenant deux radiations $\lambda_1 = 509$ nm et $\lambda_2 = 644\,$ nm.
 - al Decrire le phénomène observé.
 - b) Pour queiles valeurs des ordres p₁ et p₂ observe-t-on la première anti-coïncidence des franges.

9-4 = 6 =

Exercice 2 : (Diffraction)

On eclaire un rescau parfait plan par transmission, sons incidence normale, par un faisceau parallète de lumière blanche (le spectre visible s'étend de $\lambda_V = 400$ nm à $\lambda_R = 800$ nm). La longueur du réseau est de 4 cm, il compone n = 200 traits par mm (Figure 2),

- 1) Quelles sont la <u>position anculaire</u> et l'étendue angulaire des spectres d'ordre 2 et d'ordre 3. A quelle dissance de l'ordre zero pourra-t-on les observer dans le plan focal d'une lentille de 50 cm de focale ?
- 2) Dans quels asdres k pout-on separer, seton le critère de Rayleigh, les deux mies jaunes du « doublet du sodium » de longueurs d'onde 589,0 et 589,6 nm?
- 3) Quel doit être le nombre minimal de fentes du réseau your que cette séparation son possible dans le premier ordre?

Bon Courage